

Absolute Value Equations

IS
$$|ax+b|=C$$
,

NO Solution when $C < O$

Otherwise Solve $ax+b=C$ or $ax+b=-C$

Final answer in Solution Set.

Ex: Solve $|2x-3|=9$
 $|2x-3=9|$ OR $|2x-3=-9|$
 $|2x-3=0|$ $|2x-3=-9|$
 $|x-3=0|$ $|x-3=0|$ NO Solution

Solve
$$|3x + 4| = 5$$

 $3x + 4 = 5$ OR $3x + 4 = -5$
 $3x = 1$
 $x = \frac{1}{3}$
 $x = -3$
 $x = -3$

Is we had
$$|3x+4|=-5 \Rightarrow N0$$
 Solution

Solve
$$2|x+6|-1=19$$
 Hint: Isolate the Abs. Value. $2|x+6|=20$ $|x+6|=10$ $x+6=10$ OR $x+6=-10$ $x=-16$ $x=-16$

After isolating the Abs. Value if $|x+6|=-10 \Rightarrow \emptyset$

Solve
$$-3 |2x-8| + 12 = 15$$

Hint: As always,

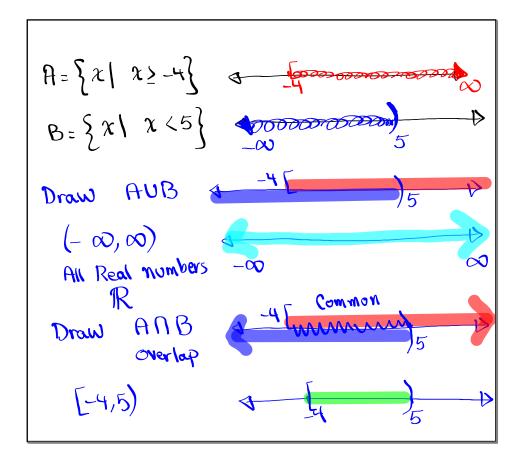
Isolate the

abs. Value

Sirst.

Divide by -3

 $-\frac{3}{-3}|2x-8| = \frac{3}{-3}$
 $|2x-8| = -1 \implies$


Solution

Solve abs. Value equation in the form of
$$|ax + b| = |cx + d|$$

Solve $|ax + b| = |cx + d|$ OR $|ax + b| = |cx + d|$
Ex: Solve $|ax - 7| = |ax + 5|$
 $|ax + b| = |cx + d|$
 $|ax + b| = |cx + d|$
OR $|ax + b| = |cx + d|$
 $|ax + b| = |cx + d|$
OR $|ax + b| = |cx + d|$
 $|ax + b| = |cx + d|$
OR $|ax + b| = |cx + d|$
 $|ax + c| = |cx + d|$

Solve
$$|2x-6| = |x+12|$$

 $2x-6=x+12$ OR $2x-6=-(x+12)$
 $2x-x=12+6$ $2x-6=-x-12$
 $x=18$ $2x+x=-12+6$
 $3x=-6$
 $x=\frac{6}{3}$ $x=2$

Solve
$$|\chi - 10| = |\chi + 10|$$

 $\chi - 10 = \chi + 10$ OR $\chi - 10 = -(\chi + 10)$
 $\chi - \chi = 10 + 10$ $\chi - 10 = -\chi - 10$
 $0 = 20$ $\chi + \chi = -10 + 10$
Salse $2\chi = 0$
No solution $\chi = \frac{Q}{2}$ $\chi = 0$

Solve
$$|3x+1|-|2x-5|=0$$
 Hint: Write $|3x+1|-|2x-5|=0$ in the form of $|3x+1|=|2x-5|$ $|ax+b|=|cx+b|$
 $|3x+1|=|2x-5|$ OR $|3x+1|=-|2x-5|$
 $|3x-2x|=-5-1|$
 $|x=-6|$
 $|x=-6|$

Given
$$A = \{21, 2, 3, 4, 5\}$$
 $B = \{6, 7, 8, 9\}$
 $C = \{4, 5, 6\}$
 $A \cap B = \{4, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $A \cap C = \{4, 5\}$
 $A \cap C = \{4, 5\}$
 $A \cap C = \{6\}$

Solve
$$3 < 2x - 3 \leq 7$$
express Sinal answer in S.B.N., interval
notation, and graphing.
 $3 + 3 < 2x \leq 7 + 3$
 $3 < 2x \leq 5$

OS.B.N. $2x = 3 < 2x \leq 5$

2) Interval notation (3,5)

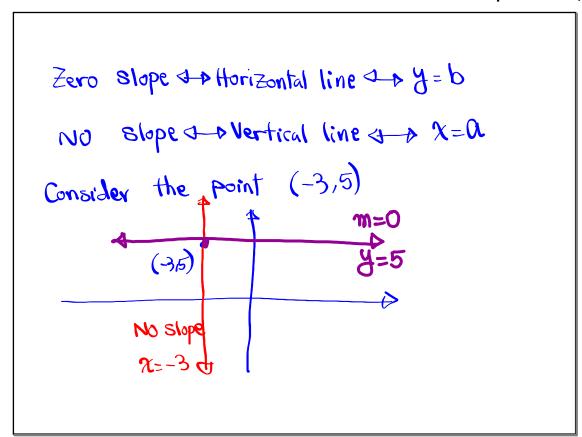
$$S(x) = x - 5 \qquad g(x) = x + 5$$

$$Sind$$
1) $(S+9)(x)$

$$= x - 5 + x + 5 = 2x$$

$$= x - 5 - (x + 5)$$

$$= x - 5 - x - 5 = -10$$
3) $(S-9)(x) = (x-5)(x+5)$


$$= x^2 - 25$$

$$= x^2 - 25$$

$$= x + 5 + 0$$

Graph
$$\dot{\varepsilon}$$
 shoole
$$\left(\frac{3}{3}(x)\right) \leq \frac{3}{5}\chi - 3$$

$$\left(\frac{3}{3}(x)\right) \leq -\frac{5}{3}\chi$$

